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Abstract 

Many aspects of the real world continue to plague stereo matching systems. One of these is 

perspective foreshortening, an effect that occurs when a surface is viewed at a sharp angle. 

Because each stereo camera has a slightly different view, the image of the surface is more 

compressed and occupies a smaller area in one view. These effects cause problems because 

most stereo methods compare similarly-sized regions (using the same-sized windows in both 

images), tacitly assuming that objects occupy the same extents in both images. Clearly this 

condition is violated by perspective foreshortening. 

We show how to overcome this problem using a Local Spatial Frequency representation. A 

simple geometric analysis leads to an elegant solution in the frequency domain which, when 

applied to a Gabor filter-based stereo system, increases the system's maximum matchable 

surface angle from 30 degrees to over 75 degrees. 
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1     Introduction 

Stereo matching provides the foundation for many methods in computer vision, and a large 

number of practical applications: robot navigation, parts inspection, aerial or satellite map- 

ping, and medical imaging to name a few. In all of these, the distance to objects in the scene 

is computed by comparing several images of the world. The distance thus computed might 

then be used to plan a robot's path, determine the pose of a CAD model, generate land- 

scaping contours, or position a robot arm. Since these tasks may be of critical importance, 

the distance estimates must be well-characterized and precisely determined. Although one 

can try to extract distance from a single image (e.g., using shape from shading with certain 

assumptions) or many images (e.g., using multibaseline stereo or optical flow), we will study 

a minimal configuration for model-independent stereo: two cameras with known position 

and orientation. 

The problem of computing distance from two images can be reduced to that of finding 

which pixels correspond between the two images. Given a pair of corresponding pixels, the 

distance between the two cameras and their orientations, it is easy to apply triangulation to 

find the distance to the point in world coordinates represented by those pixels. So our task 

is to find the vector offsets between corresponding pixels: this vector is called the disparity 

at a given pixel, and is measured in units of pixels in the image plane. Informally, the 

disparity tells you how far you must shift a pixel in one image to have it line it up with its 

correspondent in the other image. 

Object surfaces are rarely viewed head-on in both images of a stereo pair. Instead, they 

may appear more compressed in one image, due to perspective foreshortening, as in Figure 1. 

When a surface has a textured appearance, this effect makes matching its two images very 

difficult, since its appearance differs so much between the two images. This leads to confusing 

results from area-based stereo matching techniques, because the visible areas vary so much 

between the two images. 

In this paper we develop a model of perspective foreshortening that enables us to quan- 

titatively predict its effect on stereo image pairs. We present two equivalent forms of a 

correction factor that allow us to reason about foreshortening effects in both 3D world co- 

ordinates and 2D image coordinates. We show how to improve the accuracy of phase-based 

stereo matching systems using this information, and demonstrate its application to a particu- 

lar Gabor filter-based stereo system. Applying the correction factor to this system increased 



Figure 1: Stereo pair illustrating the effects of foreshortening; image compression, differing 

spatial extents. 

its maximum matchable surface angle from 30 degrees to over 75 degrees. 

2     Related Work 

Local spatial frequency has already been identified as a valuable tool for modeling surface 

shape and segmenting multiple textures in a single image [Kru94] [MP89]. These approaches 

use filter magnitude in the frequency domain as the feature of interest, and require either 

that the surface textures exhibit specific properties (e.g., periodicity), or that they be viewed 

directly head-on. 

Local spatial frequency representations have also been successfully appled to optical 

flow problems [BFBB92] [XS94], using phase information as well as magnitude. The stereo 

problem is more constrainted than optical flow, so we should be able to do better by taking 

advantage of the additional constraints. 

There have been a few attempts at modeling foreshortening in the context of stereo 

matching. Jones and Malik [JM91] attempted to apply local spatial frequency to the prob- 

lem, but got unsatisfying results. Belhumeur [Bel93] addressed the problem in the spatial 

domain, but his method requires an estimate of the disparity derivative, an inherently noisy 

estimator. The variable window method of Kanade and Okutomi [KO90] implicitly addresses 

foreshortening in the spatial domain by allowing corresponding windows to have different 

sizes, but is intended to function as a high-precision refinement technique: without proper 

guidance from other sources it tends to get stuck in local minima and flatten out sloped 



surfaces. 

Several phase-based stereo methods have been described in the literature [FJJ91] [San88] 

[Wen90], and a review of the more popular variations can be found in [JJ94]. Although some 

of these mention foreshortening as an issue, none has explicitly modeled it or corrected for 

it. 

3    Background 

3.1     Stereo Matching 

Stereo matching is a useful tool in a variety of applications: robot vision, parts inspection, 

and aerial mapping to name a few. It is used to acquire knowledge about distance to objects 

in the world. It is a passive technology, relying on the interpretation of pixel luminance 

intensities in two or more images to reconstruct 3D information. Active technologies also 

exist (e.q., laser rangefinders, sonar, and radar), but this paper will limit its scope to the 

passive imaging method of stereo matching. 

The minimum system requirements for stereo vision are a pair of cameras positioned 

with overlapping fields of view. These cameras could be arranged in any number of ways, 

but to simplify the forthcoming discussion we will restrict our attention to a simple case: 

both cameras on a horizontal plane with optical and vertical axes parallel, and known base- 

line (distance between them). Thus we explicitly avoid issues dealing with camera vergence 

(rotation about the vertical axis), torsion (rotation about the optical axis), unknown base- 

line separation, image rectification, and camera calibration. Such issues can be addressed 

by other methods (e.g., weak calibration [RBH94], Fundamental Matrix recovery, explicit 

hardware control [Ros93]) and thus can reasonably be avoided here. 

The primary task in stereo matching is to locate pairs of pixels that are images of the 

same point in space. Once a correspondence has been established, it is a simple matter to 

determine the distance to that point using triangulation. We can derive the exact relation by 

considering the overhead view in Figure 2. Similar triangles give us two equations relating 

the pixel indices xn, and xm to depth Z: 

AB_   _   xm B + AB  _  x^ (1] 

Z     ~     f Z        ~    f U 
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Figure 2: Overhead view of a typical Stereo Vision setup. A pair of cameras with focal 

length /, separated by baseline distance B, are represented by their focus points on the 

lower left. Object point P has corresponding image coordinates xiL and xm, and lies at 

depth Z from the focus points. Mirror image vectors —xiL and —xm are shown to make the 

similar triangles used in Equation 1 more explicit. 

Solving both of these for AB and setting them equal, we obtain the canonical expression 

relating horizontal disparity to depth: 

Disparity   =   x,x — £; R 
Z (2) 

Equation 2 gives pointwise disparity only; we will show how to extend this description 

to surfaces in Section 4. 

3.2     Traditional Stereo Algorithms 

Existing stereo algorithms in the computer vision literature can be loosely classified under one 

of three headings: traditional correlation-based stereo, feature-based stereo, or frequency- 

based (often phase-based) stereo. In correlation-based stereo (henceforth called "traditional" 

stereo, e.g. the two image case of [0K91]), disparity is computed by fixing a small window 

around a pixel in the left image, then measuring the correlation or Sum-of-Squared-Difference 



error between intensities in that window and those in similar windows placed at different lo- 

cations in the right image. The placement that yields the lowest error is used to compute the 

disparity estimate. This procedure is applied to the image at successively higher resolutions 

in a coarse-to-fine manner, restricting the search based on the disparity estimate from the 

previous (lower resolution) image. In feature-based stereo (e.g., [Mat89]), the dense image 

is converted into a spatially sparse set of features (e.g., corners, edges) which are matched. 

This results in a sparse disparity map which must be interpolated to yield disparities at every 

pixel. Finally, in frequency-based stereo (e.g., [San88]) the original signal is transformed to 

Fourier space, and the phase of the transformed signal is used to compute the disparity, in 

any of several possible ways [JJ94]. 

3.3     The Scalogram: A Unified View of Scale Space 

The scalogram is one of several representations that makes use of the local frequency content 

of an image. 

Why Local Frequency? Many of the problems in traditional stereo arise from its limited 

image representation. Many imaging phenomena are more succinctly described (and more 

easily manipulated) in the Fourier domain than in the spatial domain. For example, a 

sinusoidal pattern at any scale can be fully described by four values in the Fourier domain: 

amplitude, frequency, phase shift, and a constant (DC) offset. The power of the Fourier 

transform is its ability to extract this information from any signal in a straightforward and 

deterministic way. You can think of an image as expressing a function as a sum with delta 

functions forming the basis, and the Fourier representation as representing the same function 

but with sinusoidal basis functions. The problem with using the Fourier transform directly 

is that it extracts frequency information contained everywhere in the image; you may find 

the precise frequencies present in a signal, but you won't know where in the signal those 

frequencies occur. This is unacceptable for image matching. 

However, we can compromise by applying the Fourier transform not to the entire image, 

but rather to a small subset, or window of the image. By restricting attention to the parts 

of the image immediately surrounding a given pixel, we can learn about the local frequency 

context, the patterns present only at that pixel. There is a trade-off, however. By restricting 

ourselves to a small window on the image, we sacrifice the precision with which we can isolate 

particular frequencies. 
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Figure 3: Double sine wave signal and associated scalogram (both magnitude and phase). 

There are many local frequency representations: spectrograms (Short Time Fourier 

Transforms), Wigner-Ville distributions, wavelets and scalograms to name a few. All are 

similar in effect, but slightly different in structure. The spectrogram uses a fixed window 

size at all scales and a logarithmic sampling of wavelengths. This can be useful for tex- 

ture analysis, where you expect to see the same pattern repeated often at small scales, but 

seems less useful for image matching. The fixed window size means that high frequency 

results will not be easily localized, and low frequencies may not have enough support. In 

contrast, the scalogram uses a variable window size, one which is always a constant number 

of wavelengths long. This makes high frequencies much more localizable, and provides the 

necessary support for low frequencies. The scalogram is actually a special case of the very 



general wavelet functions: the scalogram is a wavelet with a Gabor function as the transfer 

function. Wigner-Ville is a compromise between spectrograms and scalograms, but often 

contains many cross terms that complicate automated analysis. A nice overview of all these 

representations can be found in [RV91]. 

Figure 3 illustrates a simple signal and its scalogram, computed as follows: 

mX  m\- 
Gabor\ — 

.'2TT„ 
:>      \ m\<T )       .    £ X forx £ 

ScalogramR(a;,2/) = (R * Gabory)(x) 

where R is the one dimensional input row, A is the filter wavelength, m is the number of 

wavelengths to fit in the window, a is the Gaussian parameter expressed as a fraction of 

the window size mX, and * denotes convolution. The signal (upper left) consists of a sine 

wave with fairly high frequency on the outside, and a sine wave of lower frequency spliced 

into it. The scalogram plots have a straightforward interpretation: the horizontal axis is the 

same as in the original signal (Pixel number) and the vertical axis is linear with respect to 

wavelength (in pixels). Short wavelengths are on top, longer wavelengths are at the bottom. 

The intensity of the points in the magnitude image (lower left) encodes the strength of 

the signal at a given location and resolution, or wavelength; darker spots mean stronger 

response. It's easy to see the relative contributions of each frequency to each point in the 

image; the frequency information is very well localized, except at the junctions between the 

signals. The phase plot (lower right) shows interesting structure, but is less easily interpreted 

because many of the calculated phase values are unreliable: only those phases that have high 

corresponding magnitudes are of measurable interest. The most reliable phase values are 

most easy seen on the peaks in the combined plot (upper right), where magnitude is encoded 

as surface height. These plots have a triangular shape because no data is plotted where the 

filter window would extend beyond the signal boundary. 

This kind of representation is very useful for image matching. In particular, the phase 

measurements translate directly into disparity measurements: disp = L~v 
R' ■ X. This 

gives us a means of generating disparities to subpixel accuracy without having to explicitly 

interpolate the original signal. 



3.4     Phase Difference Measurement Errors 

Instead of matching intensities directly, phase methods fit regions of intensities to continuous 

filters, then use properties of the filter output to determine disparity. This relation lies at 

the heart of all phase-difference methods: 

disparity   =     • A  =  A</> •  (3) 
2-7T frequency 

This equation can be readily understood by applying it to the continuous domain of simple 

sine waves. It simply says that disparity is equal to the translation of the sine wave (i.e., 

phase difference A^>, measured in radians) scaled by its wavelength, or period A. The same 

intuition works for windowed continuous sine waves as well (e.g., Gabor filters which are 

Gaussian-modulated sine waves). Problems arise when applying this to the discrete case, 

however. How is the actual frequency of the sinusoid measured? Phase plays an important 

role in the disparity computation, but how accurately can it be measured? Also implicit 

in Equation 3 is the assumption that the left and right phases are measured at the same 

frequency, i.e. on similar sinusoids; is that assumption reasonable? 

To illustrate the sensitivity of these equations consider what happens when the signal 

being studied is a simple sinusoid. 

3.4.1     Measuring sinusoid frequency 

When filtering a periodic signal there are two common techniques for determining the fre- 

quency of the signal: using the frequency of the pass-band filter with highest magnitude 

response or measuring the phase derivative of the filtered signal. 

Using the filter frequency directly is troublesome because any discrete filter will have a 

blurred response; it combines the responses to all of its passed frequencies. Some systems 

use the approximation that the filter's peak tuning frequency is a good enough guess[San88] 

[Wen90], but this assumption may reduce the precision of the results. One "advantage" to 

using this is that its variance is a fixed quantity; it does not depend on the actual signal 

content. 

The phase derivative (aka instantaneous frequency) provides a more accurate measure 

of a sinusoid's frequency in theory, but in practise its accuracy depends on the amplitude 

of the input signal.   This has led several researchers to develop constraints that filter out 
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Figure 4: The transfer function of a Gabor filter. 

unreasonable phase-derived frequencies[FJJ91] [XS94]. The constraint developed by Fleet et 

al filters out those responses whose phase derivatives predict frequencies that lie outside the 

range of the filter. While this constraint provides a useful "sanity check" on the validity of 

the computed frequency, it cannot be used to filter out the effects of aliasing or compensate 

for perspective foreshortening. 

3.4.2    Measuring phase 

The output of a Gabor filter is a complex number. We are primarily concerned with measur- 

ing the phase component of this number, but how accurate is a given phase value? Figure 5 

gives us some intuition. The vectors represent complex numbers; the length of a vector is its 

magnitude, and the angle between the vector and the horizontal axis is.its phase. Adding an 

error vector e*with length e has little effect on the phase of the longer vector, but results in a 

completely random phase value for the smaller vector. The precision of a particular vector's 

phase can be determined exactly by comparing its length to that of the error vector e. 

Figure 5: The effect of measurement error vector e*on phase angle 
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Figure 6: Maximum phase angle error as a function of the length ratio. 

Given a vector v and an error vector e, we can compute the potential error in its phase 

Lv exactly using Equation 4 below, derived as follows. Place the tail of v on the origin 

and rotate v so that it points right on the horizontal (i.e., with phase angle zero). Draw 

a circle of radius e centered at its head. To find the maximum phase error, draw the line 

tangent to the error circle that also intersects the origin (actually there are two symmetric 

such lines; draw the one on top). The slope m of that tangent line gives us the maximum 

error angle: m = tan error. To find the slope, plug the equation for the line (y = mx) into 

the equation for the circle ((x - \v\)2 + y2 = |e|2) and solve the resulting quadratic equation 

for x. At the point of intersection this equation will have two real and equal roots, so we set 

the discriminant equal to zero and solve for m: 

tan error = m 

\ !)- 1 
(4) 

Equation 4 tells us that the maximum phase error depends solely on the ratio between the 

lengths of vectors v and e. Some phase angle errors are plotted as a function of this ratio in 

Figure 6. 

There are many factors that contribute to the error vector e and therefore reduce the 

precision of the measured phase value: The precision used in the floating point arithmetic, 

the blurring of the filter response due to the presense of information at nearby frequencies, 

10 



the discretization of the filters themselves (especially at high frequencies) to name a few. A 

characterization of the error may be found in [FJ93]. 

3.4.3    Comparing Frequencies 

In order for phase difference to yield a precise disparity estimate, it must reflect measure- 

ments taken at the same frequency. But what if the instantaneous frequencies measured 

by the same filter on a pair of images differ, as can occur with perspective foreshortening? 

Others have simply used the filter tuning frequency, or the average of the two instanta- 

neous frequencies, but these are very coarse approximations not based on physical reality. 

The main contribution of this paper is the development of a theory for finding the proper 

frequencies, based on the physical geometry of the scene, presented in Section 4. 

3.5     Our phase method 

The foreshortening analysis to be presented in Section 4 applies equally well to many phase 

methods. We will apply it to a particular phase method we have developed, similar in spirit 

to those in [San88] and [Wen90], to demonstrate the concrete results in Section 5. In this 

section we outline the uncorrected (for foreshortening) algorithm to use as a framework for 

later discussion. 

Our algorithm computes the disparity at each pixel using phase differences. Phase values 

with low corresponding magnitude will be filtered out using a heuristic peak-finding process. 

The remaining phase differences (which correspond to disparity guesses at many scales) are 

then fitted to an "ideal" phase-difference curve. A given disparity corresponds to a single, 

unique phase-difference curve; the curve that best fits the measured phase differences will 

give our disparity estimate. 

We will illustrate the algorithm by describing the steps needed to generate a disparity 

map for the left image. 

Let a pair of images, IL and IR be given. We assume that these images have the same 

dimensions, and were taken with a pair of cameras whose optical axes are parallel (so that 

the epipolar constraint holds). If the cameras are properly calibrated, this constraint reduces 

the matching problem from two dimensions to one, because like-numbered scanlines in the 

two images are guaranteed to correspond to the same plane in the world. We can thus limit 

the following discussion to the problem of matching a single row in the image pair. 

11 



Pick a pair of corresponding rows RL and RR, each containing n pixel intensities. Com- 

pute the scalograms of these rows, using m = 4 and a = |. The scalogram for a given row 

is a two dimensional matrix of complex numbers: for convenience in discussion, we split it 

into two matrices, magnitude p and phase <j). 1 So ph{n, A) is the magnitude of the left row's 

scalogram entry at pixel n with wavelength A, ^i(n,A) is the phase of the left row's entry 

at that point, and similarly for the right row with pp. and <j)R. 

To compute the disparity for a given pixel n, we look at the corresponding columns in 

the magnitude plots PL(JI) and pR{n). These columns represent the strength of the signal 

at many wavelengths. Since regions with low magnitude will yield unstable phase values, 

we will restrict our attention to those areas with the largest magnitude by finding peaks in 

the magnitude plot. While this should (in general) be a function of both pL and pR, in the 

present implementation only p^ is used. 

The heuristic peak finding scheme works as follows. We attempt to find those regions 

of the function that exhibit explicit peaks by repeatedly fitting and subtracting polynomial 

curves to the peak regions of the current function. The extent of the peak region is deter- 

mined by a simple heuristic: start with a maximum value, move outward until the second 

derivative is no longer negative or the end of the function is reached, then back up one or 

two pixels. The indices of the current peak region are stored at each step, a third degree 

polynomial is fitted to that region and subtracted from the function, and the process repeats, 

terminating when the current (subtracted) function's maximum is less than some fraction 

of the original maximum (this is an arbitrary cutoff; for this paper a low threshold of 0.02 

was used). 

Having isolated regions with high magnitude, and hence having ignored potentially unre- 

liable phase values, we proceed to fit the remaining phase differences. First we enumerate a 

list of possible disparities and compute the "ideal" phase difference curve for each disparity. 

From our original equation for disparity, we have: d = A A^<1' • Multiplying through gives us 

A(f>ideai = 27TT. Unfortunately, we cannot match directly against this ideal curve, since we can 

only measure the phase difference modulo 2ir (phase unwrapping techniques, such as [Tri77] 

require high magnitudes at nearly all wavelengths, an unreasonable assumption in this con- 

text). So we assume that no measured phase difference ((j)measured(n, A) = (f>L(n, X)-(j)R{n, A)) 

lk complex number (C) can be represented by a pair of real numbers in several ways; real and imaginary 

(C = a + bi) or magnitude and phase (C = pe'*) are the most common. 

12 
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Figure 7: Sample column from the scalogram: (a) Magnitude column, illustrating the peak 

finding procedure, (b) Phase column, illustrating the fit to an "ideal" phase difference curve; 

only those values inside the dotted rectangles are used in the fit. 

will be greater than 7r, and compute errors based on (A<^ea; — A</>measured) mod 2TT. If we 

define W to be the set of wavelengths extracted by the peak-finding process, then the error 

for a given disparity d at pixel number n is defined as: 

Error = ^P p(n,\)\(A(j)ideai - A(f>meaSured) mod 2ir\ 
xew 

Finally, we select the disparity with minimum error as the result for this pixel. 

This method will be our base case; we will compare this phase method against a similar 

one that includes foreshortening correction in Section 5. 

4     Analysis 

In this section we show how perspective foreshortening is manifest in the local spatial fre- 

quency representation of stereo images. Ours will be a forward-reasoning analysis, beginning 

with complete knowledge of the three-dimensional geometry of the scene and ending with 

its two-dimensional projection in the image plane. The primary result is the presentation 

(in Equation 14) of the Frequency Shift scale factor that allows us to compensate for ar- 

bitrary foreshortening effects without explicitly warping the images. This result makes no 

restrictions on the surface texture, and will not require the use of disparity derivatives. The 

complementary technique (starting with the projections to determine three-dimensional ge- 

ometry) will be presented in Section 5. 

13 



To simplify the analysis, we assume the only object in the world is a textured flat plate 

that is either parallel to the image plane, or rotated about the vertical axis by some angle 

6. We further assume that the stereo cameras have parallel optical (depth) and vertical 

(height) axes. Note that we can restrict our attention to the effects of foreshortening in 

one-dimensional image scanlines, rather than complete two-dimensional images, since all 

disparities will be horizontal under this assumption. Our world model will likewise be a 

two-dimensional slice through the three-dimensional scene. Figure 8 shows an overhead 

schematic of a horizontal slice through the world. We adopt the convention that parameters 

measuring distances in the world will be capitalized (e.g., Xs, ZL), and those measuring 

pixel or camera distances will be lower case (e.g., xn,, f). 

Figure 8: Overhead view of the foreshortening model. Xs is the distance from the point 

exactly in front of the left camera (the origin Os at distance ZL) to the point (S) on the plate 

being studied; xiL and xiR are the left and right pixel indices of the image of surface point 

S; the cameras are separated by baseline B and the surface tilts away from the cameras at 

angle 9. 

Although our ultimate goal is to find the disparity between two stereo images, we must 

first determine how the appearance of the object's surface texture will differ between them. 

Specifically, we want to know how the sampling rate varies between the two images. This is 

a geometric formulation; what matters is how much of the surface is being mapped to each 

pixel, not the actual surface texture (i.e., color intensity).  So for each location Xs on the 

14 



Xs cos •d 
S(Xs) 

Z^Xssin 9 

Xs cos w - B 
S(Xs) 

Figure 9: Overhead view of the foreshort- 

ening model. Similar triangles for the 

left camera geometry are highlighted (see 

Equation 7). 

Figure 10: Overhead view of the fore- 

shortening model. Similar triangles for the 

right camera geometry are highlighted (see 

Equation 8). 

surface, we want to compare the pixel areas in the left and right images.  Mathematically, 

SXS 
SxiL 

we want to compare the left sampling rate |^ to the right sampling rate j^2-'- 

5XS 

Sampling ratio   =    -ß^- 
8x; R 

Sxi 
(5) 

Simplifying the ratio in this way proves most useful. The resulting formula tells us we 

can compute the sampling ratio (which will be called frequency shift later) in image space, 

without having to explicitly model the distance Xs along the object. Unfortunately, it also 

implies that we need the disparity derivative (recall ^disparity is simply 8{xn, — £;#) = 

1 — Sampling Ratio). Since our ultimate goal is to estimate disparity, it would be best if 

we could avoid using both disparity and its derivative in our calculations (the derivative of 

a noisy signal will be even noisier). The remainder of this section will show how we can 

express this ratio with terms that do not require disparity derivatives. 

4.1     Relating Disparity to Surface Angle 

15 



How is disparity related to the surface angle? Equation 2 gives the disparity for an individual 

point, but we will now show how it varies across a surface. We will focus our attention on 

the distance from the left camera to the surface point immediately in front of it, expressing 

other depths in terms of this value ZL- 

Recall that disparity is the difference of the left and right pixel indices. So let's see how 

each of the left and right indices (x,x and xiR) relates to the surface angle 9. A quick look 

at Figure 8 shows us the general answer using similar triangles: 

pixel index X World Coordinate ±_            ( GC\ 

focal length Z World Coordinate 

Figures 9 and 10 highlight the similar triangles for the left and right scene geometries. 

Applying Equation 6 to those figures we obtain expressions for xn and X{R: 

XJL _ Xs cos 6 

f ~ ZL + Xssm9                                                     { } 

XjR _ Xs cos 9 - B 

f ~ ZL + Xssm6                                                     { ] 

Equations 7 and 8 give us expressions for xn, and XIR in terms of the focal length /, 

baseline B, distance in front of the left camera ZL, surface angle 6, and location on the 

surface Xs- These equations represent projections of the same surface point Xs into two 

image planes, and we can find the relationship between them by solving Equations 7 and 8 

for Xs and setting them equal. 

XILZL xiRZL + Bf 

f cos 9 — xn sin 6 f cos 9 — XiR sin 9 

Solving Equation 9 for the right pixel index gives us: 

xiR   =   xtL(l + —Un9) -—i- (10) 
V       ZJL J       ^L 

And finally, recalling that disparity is the difference of the two indices: 

disparity   =   xiL - xiR  =  — xiL—-t&n9 (11) 
ZL ZL 
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Equation 11 is nearly the answer we want. It relates disparity to the scene parameters, 

and does not depend on knowing the actual surface location. It does require knowledge of 

ZL (distance to the surface point in front of the left camera), unfortunately, but we will 

eliminate this restriction below. 

Equation 11 has some interesting interpretations. When the surface is frontoplanar (i.e., 

6 = 0 and thus tan 6 = 0) it reduces to the familiar expression relating disparity to depth 

from Equation 2; this is correct since all surface points would lie at the same depth ZL- 

And for an arbitrary fixed angle 9 the disparity derivative is constant, i.e., the disparity 

varies linearly with respect to the image location xiL. While we won't take advantage of this 

property of the derivative, it could prove useful to shape-recovery techniques. 

4.2     Expressing the Sampling Ratio using Image Parameters 

Now that we know how the disparity and pixel locations relate to surface angle, let us return 

to the Sampling ratio (Equation 5) and eliminate the derivative by substituting for X{R: 

8xlR        8(xiL(l + -§-t<m6) -§f 
Sampling ratio   =   =   —^ ^ f '- ^- from Equation 10 

oxiL bxiL 
o 

Geometric Form   =    1-\ tanö (12) 
ZL 

This expression is very interesting. It tells us that for a given flat surface, the sampling 

ratio is constant over both images of the surface. In other words, the local spatial frequencies 

of the left and right images are related by a simple constant scale factor. You can get a feel 

for this by visually tracking the low magnitude phase singularities (white spots) between the 

two image scalograms in Figure 11. 

The fact that foreshortening causes frequency shifts has been noted in the literature 

[FJ91], but no explicit model was given to explain it. Instead, the instantaneous frequency 

was recovered using a heuristic averaging technique. This technique yielded somewhat better 

results than the use of direct frequency, but did not take advantage of the scene geometry 

to compute the precise shift. This averaging technique also failed whenever the frequency 

shift caused the instantaneous frequency to fall outside the range of the filter in either of 

the images. Our model overcomes these problems by making use of all available frequency 

bands, rather than limiting attention to a small number. 
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Figure 11: Left and right views of a surface tilted 65 degrees. Upper images are the central 

scanlines, lower images are their corresponding scalograms. You can see similar features in 

both scalograms: those in the left image are present at higher spatial frequencies because 

the left image is subject to greater foreshortening effects than the right image. 

The result in Equation 12 is useful for describing the form of the foreshortening effect 

(that of a constant scale factor), but it would be useless in a stereo matcher since it requires 

knowledge of the depth Z^. A program that computed depth given depth would not be very 

impressive. So how can we eliminate the need to know Ztf Consider the ratio -§-. We can 

rewrite Equation 11 as: 

~zl 
disparity 

(13) 
/ ~ %iL tan 9 

and replace that in Equation 12, giving us this final expression for Frequency Shift (aka 

Sampling Ratio): 

Projected form   =    1 + 
disparity tan 9 

(14) 
/ — XiL tan 9 

This is what we want! Equation 14 relates parameters in the image plane to the surface 

slope 9, but does not require prior knowledge of the distance to the object or an estimate 

of the disparity derivative. It does require use of some known parameters (focal length /, 

image location xn) and variables being estimated (disparity, surface angle 9), but we will 

see how to manage these algorithmically in Section 5. 

In this section we described the effect of perspective foreshortening in terms of local 

spatial frequency. We developed this theory in steps to demonstrate several properties: the 
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frequency shift between images of an oriented flat surface is constant, it is independent of 

the surface texture, and it can be expressed using only disparity and surface angle (without 

disparity derivatives). Section 5 will show how these results can be applied to a stereo 

matching system. 

4.2.1    Verifying the Scale Factor 

Before continuing, we will verify the geometric form of this scale factor using a simple 

example: a flat surface with a sinusoidal texture. If the model is correct, the surface's 

apparent spatial frequencies will be shifted between the two images by the amount given in 

Equation 12. Note that we're not solving the stereo problem yet, in fact this demonstration 

will use the known disparity to compare the left and right image frequencies at the same 

surface locations. What this will show is that Equation 12 accurately predicts the frequency 

shift of a simple signal. We will use synthetic data so that our ground truth can be as precise 

as possible. 

Recall the geometric form of the Scale Factor from Equation 12: 

Scale Factor   =    1 + —— tan 6 
ZL 

Just what is this scale factor? It describes the relationship between the spatial frequencies at 

two image pixels representing the same surface point. How can we measure such frequencies, 

and how do we know they correspond to the same surface point? 

Finding the frequency is easy, but imprecise; we will use an artificial surface texture 

that contains a single peak in the positive frequency domain, i.e., a sine wave. Its apparent 

frequency can be found simply by locating the filter output with highest magnitude.2 As a 

further refinement, we will use the instantaneous frequency (phase derivative) of that filter 

output as our frequency estimate. Under the scalogram representation this corresponds to 

picking the maximum magnitude value in each column. 

The procedure for finding corresponding points is somewhat complex, but simply stated 

involves using knowledge of the ground truth to give the disparity at each pixel (disparity 

is inversely related to depth, which is known from the 3D model).  Remember, we are not 

2In practise our windowing scheme provides only high frequency info at the image borders, so our com- 

puted scale factor will become inaccurate at the ends of the graph since the actual spatial frequency is lower 

than the lowest measured by the filters at that pixel. 
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Figure 12: Verifying the Scale Factor - These graphs compare the predicted scale factor 

(solid line) against that computed using only image information (dashed line). The virtual 

lab setup (top left) and an example input image with surface angle of 60° (top right) are 

shown first. Next we have the results derived from a surface angled at 0° (middle left), 30° 

(middle right), 45° (bottom left), and 60° (bottom right). The virtual surface is 4.0 units 

from the left camera, both cameras have a field of view of 45° and are separated by a baseline 

of 0.4 (the surface in the actual images is larger than that shown in the top left rendering). 
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trying to solve the stereo problem at this point, we are simply trying to verify a property of 

corresponding pixels. 

Having established the correspondence in the 2D images, we extract the apparent fre- 

quency at each pixel using the method described above, linearly interpolating the instan- 

taneous frequency measurements from the right image. Finally, we graph the ratio of the 

computed image frequencies values against the predicted ratio in Figure 12, for several sur- 

face angles. The computed ratio is quite accurate but gets progressively less precise as the 

angle increases. The loss of precision occurs from several factors, e.g., our use of simple 

linear interpolation to compute the frequencies, and our filter set which only samples the 

highest frequencies very sparsely. 

4.3     Applicability 

How important is this foreshortening analysis? More specifically, how often do situations 

arise in which the assumption that a surface is frontoplanar can cause problems for stereo 

systems? Intuitively the analysis would seem to be needed any time a surface is slanted 

at a sharp angle; but what if the surface is so far away the slant can't be measured? One 

might also think it only necessary for surfaces at the sharpest angles; but close up images 

can exaggerate even small angles. We will use the Scale Factor to quantify these effects in 

the spatial domain. 

Since we want to consider the scenery being imaged rather than the images themselves, 

we will use the geometric formulation of the Scale Factor from Equation 12. Although this 

Scale Factor is a function of three variables, we can reduce it to two if we consider the ratio of 

depth over baseline ^ to be a single variable. In the rest of this section the word depth will 

denote this unitless version of depth, expressed relative to the camera baseline. For example, 

the distance between a person's eyes would be 1, the distance to their computer monitor 

4-6, and the distance to the far wall in a typically small three-person graduate student office 

about 100. Figure 13 plots the near-complete Scale Factor space for a person looking at 

objects in such an office. 

Figure 13 shows the scale factor computed from many combinations of depth and orienta- 

tion (except for the extreme values near the point at which it approaches infinity). The graph 

makes it clear that the Scale Factor has its greatest impact when objects are sharply slanted 

and/or located near the cameras. We can quantify its influence using the contour lines that 
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Frequency Shift as a function of Depth and Angle 
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Figure 13: Frequency Shift as a function of Depth and Angle. Depth is unitless relative to 

the baseline, and varies from 3 to 100. Angle varies from zero to 85°. 

separate regions of large and smaller foreshortening effects. Suppose we assume that surface 

depth and orientation are uniformly distributed throughout a scene. Then we can compute 

the probability that a surface will require at least a 10% correction term by finding the area 

under the 1.1 Scale Factor contour curve. The derivation follows in Appendix A, but the 

result is that given a uniform distribution of angles from 0° to 90° and depths from 0 to 100, 

the probability that a surface will require at least a 10% correction is 0.210355. Try it out; 

if you're sitting in an office, see if you can find one sharply foreshortened surface for each 

set of four nearly head-on surfaces in your immediate vicinity. 

Of course the probability of finding foreshortened surfaces depends very much on the 

domain being studied. Robot vehicles like Carnegie Mellon's NAVLAB often use a very 

wide baseline, on the order of one meter. With the nearest visible ground point being about 

five meters away, depth ratios of 5 to 20 are common in this domain. In that range, under 

the same assumptions of uniform distribution, the probability of finding a foreshortened 

surface jumps to better than one in three (see Table 1). Inspection robots typically use 

much smaller baselines, with corresponding depth ratios from 30 to 100. Even in that range, 

the probability of finding a 10% foreshortened surface is significant (nearly one in twelve). 

These results suggest that a wide variety of stereo vision systems could benefit from an 

analysis that considers the effects of foreshortening. 
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Depth Range P(10% effect) Example Domain 

0-100 

5-20 

30-100 

0.210355 

0.354404 

0.0808227 

Human in office 

Robot Vehicle 

Inspection Robot 

Table 1: Probability that a surface exhibits 10% variation between images due to perspective 

foreshortening. The distribution of surfaces is assumed to be uniform within the range of 

orientation angles from -| to f, and depth ratios (distance divided by baseline) are as 

specified. 

5     Application 

The mathematics developed in Section 4 is not only theoretically interesting, it can also 

improve the performance of real stereo algorithms. Phase-based methods such as [FJJ91], 

[San88] and [Wen90] as well as our method can benefit from this analysis. In this section we 

explain how to apply the Frequency Shift to these phase-based stereo matching algorithms 

and demonstrate how its application to our system increased the maximum matchable surface 

angle from 30 degrees to over 75 degrees. 

5.1     Extending Phase-based Stereo Algorithms 

Some have argued that a small number of Gabor filters are sufficient for stereo matching. 

[FJ91] [Wen90] The main motivation for this has been the claim that phase information 

is relatively stable over nearby frequencies. The idea is that although the phase may vary 

slightly across nearby frequencies, the amount of variation is small enough that the error 

introduced in measuring it at what might be the wrong frequency will be insignificant. But 

the assumption is made that the same filters can be applied to both images, i.e., that both 

images can be sparsely sampled at the same set of spatial frequencies. As was shown in the 

preceding section, that assumption is not true when perspective foreshortening occurs in the 

images. Instead of introducing error by sampling at the wrong frequency, we would like to 

turn these perturbations to our advantage by using them to confirm hypotheses of surface 

tilt. 

We will need a dense sampling of the phase space to get the most accurate results. We 
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Given: A pair of images containing greyscale intensities. 

Lists of potential disparities and surface angles. 

Camera focal length /. 

For each row 

Compute Left and Right Scalograms L and R 

For each column c 

For each disparity d 

For each angle a 

correction — I A—dtana 
c tan a — f 

error = J2 PL{C,\)\4>L{C,\) ~ 4>R(C + d, A • correction)] 
\:p(\)>threshold 

Return d (and a) that yield minimum error 

Table 2: Pseudocode for the foreshortening-corrected algorithm. For purposes of computing 

the correction factor the column index c must be zero in the center of the image. 

will also interpolate phase values between adjacent frequencies when possible. The image 

scalogram provides a useful framework for such computations, and will be used as the basis 

for our foreshortening-corrected stereo algorithm. 

The method outlined in Section 3.5 uses a global minimization strategy to find the best 

disparity from a list of candidates. This framework makes it easy to include a foreshortening 

correction term: in addition to searching disparity space, we also search over surface angle. 

Pseudocode for this revised algorithm is given in Table 2. The only difference between this 

and the earlier algorithm is the presence of the correction term on the right image phase 

measurements. This simple presentation of the algorithm is only made feasible because of 

the large number of filters used in the scalogram. The large filter set gives us a dense set of 

phases at many scales from which to compute the appropriate subsampled phases. 

There are several implementation details that arise from this simple correction factor. 

It depends on three variables: the currently hypothesized disparity, surface angle, and the 

current location within the image. Because these values vary at each pixel on the image 

scanline, it must be recomputed for each hypothesis.   And as was mentioned above, the 
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corrected frequency will almost certainly not be one of those already present in the scalogram; 

some method of interpolation will be required. These are not serious problems, but imply 

that their implementation will be very compute-intensive. 

5.2     Results 

We added the correction term to the algorithm presented in Section 3.5 using linear inter- 

polation between adjacent phases. In this section we present the results of our method on 

real images that have been synthetically mapped onto planar surfaces. The use of synthetic 

data allows us to quantify its precision using perfect knowledge of the ground truth. 

Consider the stereo pair in Figure 1. It shows a synthetic stereo image pair of a flat plate 

rotated 65 degrees from the image planes, with the image of a city scene texture-mapped 

onto the plate. The actual disparity map (computed from the 3D world model) and results 

computed from the image pair by three stereo methods are presented in Figure 14. The 

figure shows disparity maps rendered as perspective surfaces; only the area known to have 

texture is shown since the plain white background makes depth recovery impossible in those 

areas. Figure 14 also includes images of the difference between the computed disparity and 

that which is known from the world model. 

For this demonstration of the foreshortening-corrected algorithm, a set of 501 potential 

disparities were considered (0 to 50 in steps of 0.1), and the angle was fixed at 65 degrees. 

The RMS error of this result is 0.38 pixels over the entire plate, with a = 0.63. The bulk 

of this error can be attributed to two causes: the sharp spikes and a subtle but systematic 

error over the surface. The spikes most likely arise from an artifact of the rendering process 

which caused a few nearby pixels in one image to map to the same intensity. The more 

subtle effect is that the disparity error, which is within measurement bounds at the ends 

and center of the plate, tends to uniformly vary as much as 0.5 pixels between the center 

and end of the plate (see Figure 14, upper right). 

Contrast our foreshortening-corrected results with those of the Kanade-Okutomi variable- 

window refinement method [KO90]. This method uses correlation to match windows around 

pixels, but uses a statistical analysis to grow the window from 3x3 to some maximum, stop- 

ping when an error criterion (based on local changes in intensity and disparity) is exceeded. 

For this test we let disparity vary between 0 and 50 pixels (as in our method), let the window 

size vary from 3 to 21 pixels, and ran the method for 10 iterations. It did an admirable job 

25 



u*. ; -.A ■'.•■\.*:.:*VM 

Foreshortening-corrected 

Plate Disparity (row 127) 
- .t 

Ground Truth     
' lf>vj' Foreshortening-corrected   -<-— 

40 
"    *■ ^^k_ 

Kanade/Okutomi   --<■-••■ 
Uncorrected Phase   ~e>  

Ö3^                 _^ W^Q^ 
1/                    ~ «^^ 

*W.    *            /U 
35 

^"«^          ^ 
30 

25 
vlS^y? 

. .   .   .   .     *^>i 
60     70     80     90     100    110    120    130    140    150 

JLel 

Kanade/Okutomi 

,^iJ 

SO 

Uncorrected Phase 

Figure 14: Ground Truth and computed disparity maps for a surface angled at 65°. The top 

row shows ground truth on the left, a graph of a representative scanline from all methods 

on the right. The middle row shows perspective views of the disparity maps computed by 

the foreshortening-corrected method, Kanade/Okutomi and the uncorrected phase method. 

The bottom row shows differences between computed and actual disparities for pixels that 

image the plate; darker values denote larger errors. Only differences between 0 and 2 pixels 

are shown, errors larger than 2 pixels appear as a 2 pixel error. Actual plate disparities 

range from 25.3 to 39.9 pixels. 
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of approximating the surface shape, but produced many more outliers and quantized the flat 

tilted surface into several stair-step frontoplanar patches (see Figure 14, upper right). The 

RMS error of this method is 0.99 pixels over the entire plate, with a = 2.36. 

For completeness the uncorrected phase method results are also shown in Figure 14. 

The same 501 potential disparities were considered, but foreshortening correction was not 

applied. The RMS error of this result is 3.77 pixels over the plate, with a = 6.23. The main 

source of error is a general flattening trend over the entire plate, most likely due to the larger 

windows used at lower frequencies. Like most traditional stereo matchers, the uncorrected 

method has a strong bias toward frontoplanar surfaces, but unlike Kanade/Okutomi this 

uncorrected phase method is unable to restrict its attention to the smallest-sized windows. 

Other Rotation Angles A cross-section of results for different angles of rotation is pre- 

sented in Figure 15. For these results only a representative scanline is shown, to demonstrate 

how closely the computed disparity matches the actual ground truth. Only the disparities 

on the plate itself are correct because the region behind it is a plain white background, and 

there is no way to distinguish the correct disparity of a featureless surface. 

The uncorrected method does reasonably well with small angles, but at slants greater 

than 30° its performance degrades by several pixels. In contrast, the foreshortening-corrected 

method performs well even at 75°, though at 80° the systematic error becomes more obvious. 

6 Conclusion 

We have presented a theory for modeling the physical effects of perspective foreshortening 

in stereo vision systems. The crux of the theory was the development of the dual Scale 

Factors that allow us to reason about foreshortening both in the geometric domain of the 

world model, and the frequency domain of the stereo images. We presented experimental 

results validating both forms of the scale factor, and showed how it can be applied to phase- 

based stereo matching systems. Applying it to our Gabor filter-based system increased the 

system's maximum matchable angle from 30 degrees to over 75 degrees. 
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Figure 15: Ground truth and disparity (computed by both the uncorrected and 

foreshortening-corrected phase methods) for the center scanline of the city scene at vari- 

ous rotations. From left to right (and top to bottom): 0, 15, 30, 45, 60, 75, and 80 degrees. 
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A    Derivation 

We present here the derivation of one of the probabilities from Table 1.   This derivation 

assumes the depth range begins at zero (the more general results require a little more work). 

We want to find: 

P(Scale Factor > 1.1 or < 0.9) = P 
tanö 

d 
>0.1 

for d = 4f £ [0 : 100] and 9 G [—f : f ]. Since tan is symmetric we can eliminate the absolute 

value by restricting the angle 9 to [0 : |]. Continuing: 

P 
tanö \ /tan0 

*ai   = p —so-1. 

/o2 min tan£ 
Scale Factor- —, 100J J6" 

J0
aIowddd9 

/0
2min   ^,100 W0 

50TT 

To eliminate the min from the integral we must find the minimum angle requiring a 10% 

correction at distance 100: 

#min = arctan 100(Scale Factor - 1) = arctan 10 = 84.2894° 

Now we can split up the integral into two parts and evaluate it: 

o I   0.1  '       j 

■in tan 6 

~oT 
In sec 9 

Pin l-^d9 + I1   I00d9 
Jo        0.1 Jemin 

l 

+ 9.96688 
0.1 

=   23.0756 + 9.96688 

This brings us to the final result: 

tan# 
P 

d 
> 0.1 

33.0425 

50vr 
0.210355 

So under the assumption of uniform distribution on depth ratio from 0 to 100 and angle 

from —90° to 90°, the probability of a surface exhibiting at least a 10% foreshortening effect 

is 0.210355. 
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